Transition fronts for the Fisher-KPP equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Transition Fronts for Fisher-kpp Reactions

We study entire solutions to homogeneous reactiondiffusion equations in several dimensions with Fisher-KPP reactions. Any entire solution 0 < u < 1 is known to satisfy lim t→−∞ sup ∣x∣≤c∣t∣ u(t, x) = 0 for each c < 2 √ f ′(0) , and we consider here those satisfying lim t→−∞ sup ∣x∣≤c∣t∣ u(t, x) = 0 for some c > 2 √ f ′(0) . When f is C and concave, our main result provides an almost complete ch...

متن کامل

Existence and Non-existence of Fisher-KPP Transition Fronts

We consider Fisher-KPP-type reaction-diffusion equations with spatially inhomogeneous reaction rates. We show that a sufficiently strong localized inhomogeneity may prevent existence of transition-front-type global in time solutions while creating a global in time bump-like solution. This is the first example of a medium in which no reaction-diffusion transition front exists. A weaker localized...

متن کامل

Transition Fronts in Inhomogeneous Fisher-kpp Reaction-diffusion Equations

We use a new method in the study of Fisher-KPP reaction-diffusion equations to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one spatial dimension. We also obtain new estimates on entire solutions of some KPP reactiondiffusion equations in several spatial dimensions. Our method is based on the construction of suband super-solutions to the non-linear PDE from...

متن کامل

Refined long time asymptotics for the Fisher-KPP fronts

We study the one-dimensional Fisher-KPP equation, with an initial condition u0(x) that coincides with the step function except on a compact set. A well-known result of M. Bramson in [3, 4] states that, as t → +∞, the solution converges to a traveling wave located at the position X(t) = 2t − (3/2) log t + x0 + o(1), with the shift x0 that depends on u0. U. Ebert and W. Van Saarloos have formally...

متن کامل

Exponential Stability of the Traveling Fronts for a Pseudo-parabolic Fisher-kpp Equation

In this talk, I will introduce the stability of traveling front solutions for a pseudoparabolic Fisher-KPP equation. By applying geometric singular perturbation method, special Evans function estimates, detailed spectral analysis and C0 semigroup theories, all the traveling front solutions with non-critical speeds are proved to be locally exponentially stable in some appropriate exponentially w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2016

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6609